Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms.

نویسندگان

  • Javier Marugán
  • Rafael van Grieken
  • Cristina Pablos
  • Carlos Sordo
چکیده

This study reports the analogies and differences found when comparing TiO(2) photocatalytic treatment for chemical oxidation and microorganisms inactivation, using methylene blue and Escherichia coli as references, respectively. In both processes the activation is based on the same physicochemical phenomena and consequently a good correlation between them is observed when analyzing the effect of operational variables such as catalyst concentration or incident radiation flux, both factors influencing common stages such radiation absorption and generation of reactive oxygen species. However, different microbiological aspects (osmotic stress, repairing mechanism, regrowth, bacterial adhesion to the titania surface, etc) makes disinfection kinetics significantly more complex than the first-order profiles usually observed for the oxidation of chemical pollutants. Moreover, bacterial inactivation reactions are found to be extremely sensitive to the composition of water and modifications of the catalysts in comparison with the decolorization of the dye solutions, showing opposite behaviors to the presence of chlorides, incorporation of silver to the catalysts or the use of different types of immobilized TiO(2) systems. Therefore, the activity observed for the photocatalytic oxidation of organics can not be always extrapolated to photocatalytic disinfection processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اکسیداسیون فوتوکاتالیستی متیل اتیل کتون در راکتور بستر سیال

Introduction: Emission of volatile organic compounds through industrial processes to the environment has been received more attentions currently. Photocatalytic oxidation process as a new emerging technique in air purification can be substituted for conventional techniques such as activated carbon adsorption. In photocatalytic oxidation process, pollutant molecules decompose to water and carbo...

متن کامل

Photocatalytic Degradation of Toxins Secreted to Water by Cyanobacteria and Unicellular Algae and Photocatalytic Degradation of the Cells of Selected Microorganisms

Excessive algal growth in drinking water sources is responsible for toxin generation, and desinfection-by-product formation. In the photocatalytic degradation of organic contaminants, titanium dioxide has been found to be highly efficient in the generation of hydroxyl radicals, which aree considered responsible for degradation of toxins and inactivation of water-borne microorganisms. The paper ...

متن کامل

Photocatalytic oxidation of an organophosphorus simulant of chemical warfare agent by modified TiO2 nanophotocatalysts

TiO2 nanoparticles, as a photocatalyst for oxidation of dimethyl methylphosphonate (DMMP) as an organophosphorus simulant of chemical warfare agent, were prepared by using sol-gel method. The prepared nanoparticles were then modified with transition metals in order to decrease the electron-hole recombination and increase the photocatalytic activity. Transition metal ions including Pt...

متن کامل

Photocatalytic oxidation of an organophosphorus simulant of chemical warfare agent by modified TiO2 nanophotocatalysts

TiO2 nanoparticles, as a photocatalyst for oxidation of dimethyl methylphosphonate (DMMP) as an organophosphorus simulant of chemical warfare agent, were prepared by using sol-gel method. The prepared nanoparticles were then modified with transition metals in order to decrease the electron-hole recombination and increase the photocatalytic activity. Transition metal ions including Pt...

متن کامل

Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Del...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Water research

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2010